УДК 622.278:533.92:621.039.61

А.Ф. Булат, академик НАНУ, д.т.н., Л.Т. Холявченко, к.т.н., С.Л. Давыдов, вед. инж., (ИГТМ) С.А. Опарин, к.т.н. (ГВУЗ УГХТУ)

ТЕРМОДИНАМИКА ПЛАЗМЕННОЙ ГАЗИФИКАЦИИ ШАХТНЫХ МЕТАНО-ВОЗДУШНЫХ СМЕСЕЙ, ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ ИХ ПЕРЕРАБОТКИ

В роботі показано раціональний шлях переробки збіднених метано-повітряних сумішей, який полягає в отриманні синтез-газу. Результати термодинамічних розрахунків дозволили встановити склади вихідних сумішей, продукти газифікації яких мають різний вміст цільового продукту.

THERMODYNAMICS OF PLASMA GASIFICATION OF MINE METHANE-AIR MIXES, PROBLEMS AND PROSPECTS OF THEIR PROCESSING

In work it is shown a rational way of processing of the impoverished methane - air mixes, based on reception of synthesis - gas. Results of thermodynamic calculations have allowed to establish structures of initial mixes which products of gasification have the various contents of a target product.

Непрерывно растущие цены на нефть и уменьшение ее запасов, повышение стоимости природного газа негативно сказываются на экономике многих государств, в том числе и Украины. Это побуждает специалистов и ученых многих стран мира искать альтернативные источники энергии, которые могли бы заменить традиционные энергоносители. В связи с этим, во всем мире интенсивно развиваются исследования в области газификации природного газа, шахтного метана, угля, восстанавливаемого природного сырья, а также отходов жизнедеятельности, с целью производства моторного топлива.

Особенно важным и перспективным для Украины может стать направление переработки метана и метано-воздушных смесей, добываемых из угольных пластов в процессе их дегазации и отработки залежей. Эти запасы в Украине довольно велики и составляют 3,0-3,5 трлн. м³, что значительно превышает запасы природного газа в существующих месторождениях Украины. То есть объемы такого сырья в Украине значительны и могут обеспечить решение энергетических проблем на многие годы.

В настоящее время в промышленной практике получения синтез-газа для производства метанола применяют газообразные, жидкие углеводороды, твердое топливо, в том числе и бытовые отходы. Наиболее распространенным сырьем является природный газ и газ нефтепереработки. Выбор сырья для производства метанола определяется его запасами в выбранной точке производства и стоимостью исходного сырья.

Природный и попутный газы являются одним из наиболее распространенных сырьевых источников для химической промышленности. Из данных газов получают практически все органические соединения, которые производит нефтеперерабатывающая промышленность. С точки зрения экономических показателей природный и попутный газы для производства метанола являются наиболее доступными. Однако, непрерывное их удорожание приводит к снижению широкого применения в общей химии и тем более в химии синтетического топлива. Возникшая в 70-е годы тенденция по экономии нефти и природного газа привела к разработке нового процесса получения метанола из твердых углеродсодержащих сред, в частности, из угля. Развитие производства метанола из угля сдерживалось в те годы более высокой стоимостью получаемого продукта по сравнению с получением его из жидкого или газообразного топлива.

Учитывая значительное повышение цен на нефть и природный газ, дефицит жидкого и газообразного сырья в Украине, а также значительные запасы твердого топлива, возникает необходимость в развитии технологии синтеза газа из угля и попутных газов угледобычи. Усовершенствованием существующих технологий и поиском новых направлений занимаются многие исследователи различных стран (США, Япония, Германия и т.д.), а также ученые России и Украины.

Таким образом, для синтеза метанола, являющегося исходным сырьем для производства моторного топлива, можно использовать практически любой газ, содержащий водород и оксид углерода.

В соответствии с реакцией образования метанола из синтез-газа $CO+2H_2=CH_3OH$ в исходном газе отношение водорода к окиси углерода должно составлять 2:1. Теоретически необходимо, чтобы газ содержал водорода 66,66 % (об.) и оксида углерода 33,34 % (об.). Практически это отношение необходимо поддерживать в пределах от 1,5 до 2,25. В зависимости от исходного сырья в газе может присутствовать азот, аргон, метан и др. соединения, являющиеся инертными в реакциях синтеза метанола. Представляя собой балласт, приводят к нерациональному использованию сырья и энергии. А вот даже незначительное наличие серы в синтез-газе вызывает необратимые отравления катализаторов синтеза метанола и поэтому должна подвергаться полному удалению существующими методами.

Основные пути переработки углеродсодержащих сред, в том числе угля и метаносодержащих газовых смесей, в метанол и моторное топливо, широко известны [1]. Во всех технологиях получения моторного топлива из угля и природного газа первой стадией является их превращение в синтез-газ, которая может осуществляться различными методами. На второй стадии синтез-газ перерабатывается в метиловый спирт и далее в моторное топливо. Современными технологиями из синтез-газа может синтезироваться диметиловый эфир и далее в топливо, минуя стадию синтеза метанола [2, 3].

Существуют различные методы переработки углеродсодержащих сред в синтез-газ. Наиболее распространенными являются окисление воздухом или чистым кислородом, углекислотная или паровая конверсия углерода. Все эти методы переработки углеродсодержащих сред направлены на неполное окисление

углерода с получением оксида углерода. Широко в промышленности используется паровая или парокислородная конверсия углеродсодержащих сред. Их использование позволяет получить наиболее высокую степень конверсии углерода и получить синтез-газ с необходимым для синтеза метанола соотношением H_2 :СО. При этом синтез-газ свободен от других соединений и примесей.

Ежегодно миллионы кубических метров метана выбрасывается в атмосферу из угольных шахт Украины из-за отсутствия оптимальной технологии утилизации шахтного метана. Основным сдерживающим фактором его использования является очень сильная изменчивость состава и низкая концентрация метана в воздушно-метановой смеси.

К настоящему времени в Украине, как и в других странах, существует проблема по переработке шахтных метано-воздушных смесей с низким содержанием метана, которые чаще всего либо выбрасываются в атмосферу, либо нерационально сжигаются факельным способом.

Для оценки возможностей получения синтез-газа из обедненных метановоздушных смесей проведены термодинамические исследования смесей таких составов: смесь №1 — метан 20% и воздух 80%, смесь № 2 — метан 30% и воздух 70%, смесь № 3 — метан 40% и воздух 60%. Термодинамические исследования проводились с помощью программного комплекса «Астра-4», предназначенного для расчета высокотемпературных процессов.

Расчет равновесных составов проводился при атмосферном давлении, результаты которого приведены на рис. 1. Анализ результатов исследований показывает, что все метано-воздушные смеси могут быть переработаны в синтезгаз, а его качественные характеристики зависят от состава исходной смеси. Максимальное количество получаемого синтез-газа для всех смесей наблюдается при температуре 1500 К. Объемные составы получаемых продуктов приведены в таблице 1.

Из результатов исследований видно, что с увеличением содержания метана в исходной смеси увеличивается выход целевого продукта с 37,76 до 68,82 %. Так как исходные смеси содержат инертный азот, то и в продуктах их газификации наблюдается значительное его количество, пропорциональное его исходному содержанию (рис. 2.). С целью снижения содержания азота и увеличения степени конверсии исходных метано-воздушных смесей в качестве окислителя к исходным смесям следует ввести воду (см. табл. 2 смесь №4), которая при температуре выше 1000К диссоциируется на кислород и водород. Это не только обеспечивает процессы конверсии окислителем (кислородом), но и увеличивает в конечном продукте целевую его составляющую — водород. При этом улучшается качество конечного продукта, а сам процесс конверсии по соотношению H₂/CO становится более гибким.

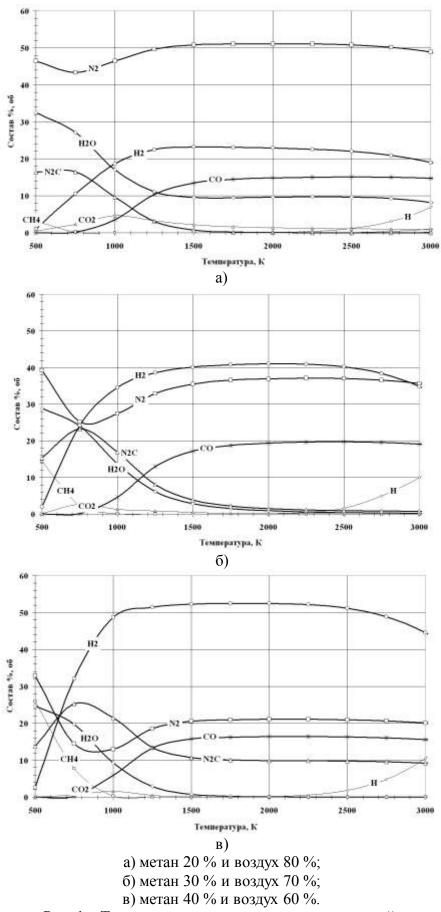


Рис. 1 – Термодинамика метано-воздушных смесей.

Таблица 1 - Результаты термодинамической конверсии метано-воздушных смесей при

температуре 1500 К.

Смесь №	Метано-воздушная смесь, % (об.)	Объемный состав продуктов переработки, %							
		H2	C0	N2	N2C	H20	C02	Прочие продукты	
1	СН4 20% + воздух 80%	22,91	14,85	51,09	0,08	9,63	1,36	0,08	
2	СН4 30% + воздух 70%	41,05	19,40	36,97	1,50	0,88	0,09	0,1	
3	СН4 40% + воздух 60%	52,44	16,38	21,07	9,90	0,08	0	0	

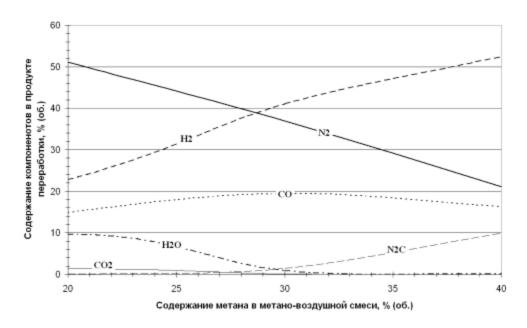


Рис. 2 — Зависимость содержания компонентов в продукте переработки от содержания метана в метано-воздушной смеси.

Таблица 2 - Результаты термодинамической конверсии метано-воздушных и водоугольных смесей при температуре 1500 К.

Смесь №	Метано-воздушная смесь, % (об.)	Объемный состав продуктов переработки, %							
		H2	C0	N2	N2C	H20	C02	Прочие продукты	
4	Смесь №1+ Н2О 10%	21,95	13,01	47,29	0,04	15,62	2,01	0,08	
5	Смесь №1+ уголь 10%	29,62	23,59	43,98	1,21	1,15	0,20	0	
6	Смесь №1+ (уголь + H2O) 10%	26,37	18,59	45,08	0,12	8,38	1,28	0,11	
7	Смесь №1+ уголь 50%	33,80	26,54	7,70	31,16	0	0	0,81	
8	Смесь №3 + Н2О 10%	52,04	20,00	24,18	3,30	0,34	0	0,12	
9	(Смесь №3+ уголь 50%) + H2O 10%	51,82	25,76	0,55	21,14	0	0	0,72	
10	(Смесь №3) + (уголь + H2O) 50%	34,57	27,68	30,61	0,24	5,57	0,97	0,12	
11	(Смесь №3) + уголь 50%	52,02	21,05	0,67	25,47	0	0	0,79	

Однако чрезмерное увеличение окислителя в виде H_2O ведет к уменьшению целевого продукта и повышению содержания воды в продуктах газификации, что свидетельствует об избытке окислителя в исходной смеси.

С целью корректировки состава синтез-газа путем снижения содержания в нем балластного азота предложено добавить в исходную смесь уголь и воду. Увеличение на 10% угля в исходной смеси ведет к заметному увеличению (до 53 %) целевого продукта и уменьшению в нем содержания воды до 1,15% (см. табл. 2 смесь №5). Добавление 10% воды (см. табл. 2 смесь № 9) приводит к увеличению целевого продукта на 3-4 % за счет конверсии СО из неустойчивого соединения N_2 С, составляющего в исходной смеси 9,9%. Еще более высокий рост объема целевого продукта (до 77,58 %) в синтез-газе наблюдается при добавлении в исходную смесь водоугольной суспензии состоящей из 10% H_2 О и 50 % угля (см. табл. 2 смесь № 10). Дальнейшее увеличение содержания угля (см. табл. 2 смесь № 11 и № 12) приводит к более низкому содержанию водорода и оксида углерода в конечном продукте.

В результате проведенных термодинамических расчетов метано-воздушных и водоугольных смесей и анализа результатов расчетов получена зависимость суммарного выхода синтез-газа от состава данных смесей и зависимость отношения водорода к оксиду углерода в продукте газификации метановоздушных и водоугольных смесей, которые представлены на рис. 3 и рис. 4. Данные зависимости показывают, что наибольший суммарный выход синтезгаза в продукте наблюдается при переработке смеси №9 и составляет 78 % (рис. 3). При этом отношение водорода к оксиду углерода в продукте для данной смеси равно 2 (рис. 4), что является оптимальным для синтеза метанола и синтетического топлива.

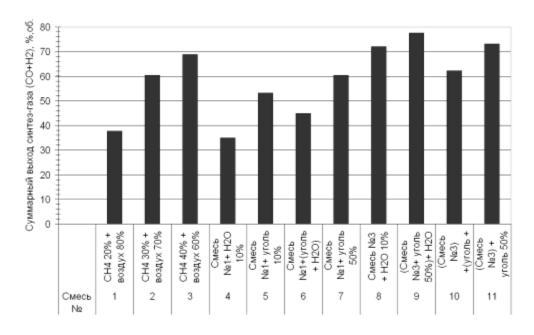


Рис. 3 — Суммарный выход (%, об.) синтез-газа (CO+H₂) при переработке метановоздушных и водоугольных смесей.

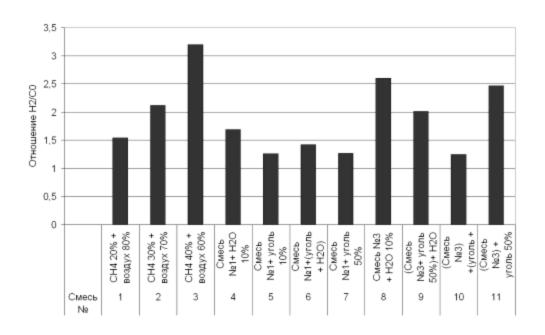


Рис. 4 – Отношение водорода к оксиду углерода при переработке метано-воздушных и водоугольных смесей.

Анализ полученных результатов расчетов показывает, что переработка метано-воздушных смесей вместе с водоугольными смесями позволяет регулировать как количественный состав целевого продукта в синтез-газе, в том числе и содержащихся в нем инертных составляющих, а также качественный показатель — соотношение водорода к оксиду углерода. На основании полученных результатов установлены сбалансированные метановоздушные и водоугольные смеси (табл. 3), в результате переработки которых при 1500К, наблюдается наибольший выход синтез-газа с оптимальным соотношением водорода к оксиду углерода.

Таблица 3 - Результаты термодинамического расчета наиболее сбалансированных метано-воздушных и водоугольных смесей при температуре 1500 К.

Смесь №	Метано-воздушная смесь, % (об.)	Объемный состав продуктов переработки, %						
		H2	C0	N2	N2C	H20	C02	Прочие продукт ы
5	Смесь №1+ уголь 10%	29,62	23,59	43,98	1,21	1,15	0,20	0
2	СН4 30% + воздух 70%	41,05	19,40	36,97	1,50	0,88	0,09	0,1
9	(Смесь №3+ уголь 50%) + H2O 10%	51,82	25,76	0,55	21,14	0	0	0,72

Выводы:

1. Непрерывное повышение цен на нефть и природный газ приводит к необходимости развития технологии получения синтез-газа из обедненных метано-воздушных смесей и угля с последующей его переработкой в метанол и синтетическое топливо.

- 2. В работе показан один из наиболее рациональных путей переработки обедненных метано-воздушных смесей, который заключается в получении синтез-газа, как исходного сырья для получения метанола и синтетических топлив.
- 2. Исследованиями установлено, что при газификации метано-воздушных смесей с низким содержанием метана добавление в смесь угля и воды приводит к расширению диапазона состава синтез-газа, его качественных и количественных характеристик.

СПИСОК ЛИТЕРАТУРЫ

- 1. Розовский А.Я. Новое топливо из природного газа// Химия и жизнь. 2002. №5. стр. 5-10.
- 2. Караваев М.М., Леонов В.Е., Попов Е.Т., Шепелев Е.Т. Технология синтетического метанола// М. Химия. 1984 239c
- 3. Розовский А.Я. Диметиловый эфир и бензин из природного газа// Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделева. 2003. т. XLVII. №6. стр. 53-61.

УДК 622.023.623:622.411.332

д-р техн. наук, проф. С.И. Скипочка д-р техн. наук Т.А. Паламарчук, (ИГТМ НАН Украины); д-р физ.-мат. наук С.А. Омельченко, О.В. Хмеленко, А.А. Горбань (ДНУ им. О. Гончара)

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭКСТРЕМАЛЬНЫХ УСЛОВИЙ НА ФИЗИЧЕСКИЕ СВОЙСТВА УГЛЯ

Наведено результати експериментальних досліджень впливу екстремальних умов природного та штучного походження на фізичні властивості вугілля.

RESEARCH OF INFLUENCING OF EXTREME CONDITIONS ON PHYSICAL PROPERTIES OF COAL

В связи с продолжающейся активной дискуссией об источниках и механизмах аномальных газопроявлений и внезапных выбросов в угольных шахтах, большой интерес представляют исследования физических свойств угольного вещества, отобранного в зонах тектонических нарушений, а также подверженных искусственному воздействию взрывного характера. Особенно это важно в плане развития теории и моделей газодинамических явлений, в основу которых положены новые результаты атомарно-молекулярных исследований угольного вещества (например [1,2]).

В настоящей работе физические свойства образцов угля исследовались методами электронного парамагнитного резонанса (ЭПР), хроматографии и электронной микроскопии. Метод ЭПР был выбран из соображений его